欢迎您访问 网课搜(wangkeSo.com),网课资源一搜即得。

电力系统灵活性:建模,优化与机制设计(英文版) 周明 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值258元)【高清非扫描版】(2023年06月)

《电力系统灵活性:建模,优化与机制设计(英文版)》周明 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值258元)【高清非扫描版】(2023年06月)

电力系统灵活性:建模,优化与机制设计(英文版) 周明 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值258元)【高清非扫描版】(2023年06月)- 网课搜【wangkeso.com】

图书简介:

高比例新能源接入的未来电力系统中,风电和太阳能将成为电力供应的重要支柱,其风、光资源的随机性和波动性,导致电力系统本征特性改变,对电力系统灵活性提出了更高的要素。高比例新能源电力系统中,波动电源和负荷不确定性双重叠加,采用增加备用应对不确定性的模式在技术和经济上均难以为继,需要针对电力系统灵活性探索新的解决方式。为此,本书首次全面探索电力系统灵活性的建模方法、优化运行理论和相应的市场机制设计,旨在为构建含高比例新能源的未来灵活电力系统提供技术解决方案和理论支撑。期待本书能够为电气工程领域的读者带来有益的启发。

目录:

1 Introduction 1
1.1 Why Is Flexibility Necessary for the Power System 1
1.2 Overview of Power System Flexibility 2
1.2.1 History and Development 2
1.2.2 Taxonomy-Power System Flexibility Sources 4
1.2.3 Power System Flexibility Analysis 5
1.3 Market Solutions 6
1.4 Summary 7
References 8
2 Power System Flexibility Modelling 9
2.1 Introduction 9
2.2 Power System Flexibility Resource Classification 11
2.2.1 Demand Side Flexibility Resources 11
2.2.2 Power Supply Side Flexibility Resources 11
2.2.3 Grid Side Flexibility Resources 13
2.3 Flexible Power Supply Resources: Analysis and Modelling 13
2.3.1 Technical Characteristics of Flexible Power Supply Resources 14
2.3.2 Economic Characteristics of Power Supply Resources Flexibility 20
2.4 Demand Side Flexibility Model 21
2.4.1 Interruptible Load 22
2.4.2 Adjustable Load 22
2.4.3 Shiftable Load 24
2.5 Power Grid Flexible Regulation Technologies 25
2.5.1 Voltage Source Converter (VSC) Based Multiple-Terminal DC Transmission 25
2.5.2 AC Grid Flexible Topology Control 27
2.6 Conclusions 28
References 29
3 Flexibility-Based Economic Dispatch 31
3.1 Introduction 31
3.2 Quantifying Accommodated Domain of Wind Power for Flexible Look-Ahead Unit Commitment 33
3.2.1 Formulation of ADWP 33
3.2.2 Flexible Look-Ahead Unit Commitment Models 37
3.3 Flexibility Based Day-Ahead Generation–Reserve Bilevel Decision Model 42
3.3.1 Day-Ahead Unit Commitment Model Considering Flexibility Constraint 42
3.3.2 Flexibility Based Reserve Decision Method 45
3.4 An Endogenous Approach to Quantifying the Wind Power Reserve 51
3.4.1 Dynamic S&NCED Model with AARO 52
3.4.2 Two-Stage Solution Method Based on the Benders Decomposition 55
3.5 Case Studies 60
3.5.1 Case Studies of the Flexible Look-Ahead Unit Commitment 60
3.5.2 Case Studies of the Day-Ahead Generation-Reserve Bilevel Decision Model 66
3.5.3 Case Studies of the Endogenous Approach to Quantifying theWind Power Reserve 73
3.6 Conclusion 77
References 78
4 Distributed Dispatch Approach in AC/DC Hybrid Systems 81
4.1 Introduction 81
4.2 Distributed Dispatch Approach in Bulk AC/DC Hybrid Systems 83
4.2.1 Distributed Scheduling Framework for Bulk AC/DC Hybrid Transmission Systems 83
4.2.2 Improved ATC-Based Distributed SCUC for a Bulk AC/DC Hybrid System 86
4.2.3 Solution Procedure 91
4.3 Distributed Dispatch Approach in the VSC-MTDC Meshed AC/DC Hybrid Systems 94
4.3.1 Hierarchy of VSC-MTDC Meshed AC/DC Grid 94
4.3.2 Hierarchical and Robust Scheduling Formulation 98
4.3.3 Solution Methodology 103
4.4 Case Studies 107
4.4.1 Distributed Dispatch Approach in Bulk AC/DC Hybrid Systems 107
4.4.2 Distributed Dispatch Approach in VSC-MTDC Meshed AC/DC Hybrid Systems 115
4.5 Conclusion 122
References 122
5 Exploring Operational Flexibility of AC/DC Power Grids 125
5.1 Introduction 125
5.2 Improving Flexible Operation of MTDC Hybrid Networks by VSC Power Regulation 126
5.2.1 Problem Description 126
5.2.2 Flexible Operation Mechanism and Model 128
5.2.3 Flexible Operation Improvement Mode for VSC Station 135
5.3 Exploiting the Operational Flexibility of Wind Integrated Hybrid AC/DC Power Systems 141
5.3.1 SCED Model with TS for Hybrid AC/DC Grid 141
5.3.2 Two-Stage RO Based on C&CG 144
5.4 Case Studies 147
5.4.1 Verify of Power Margin Tracking Droop Regulation(PMT)Mode 147
5.4.2 Exploring Operational Flexibility of AC/DC Power Networks Using TS 152
5.5 Conclusion 156
References 157
6 Demand Side Flexibility 159
6.1 Introduction 159
6.2 Residential Load Demand Response Model 161
6.3 Price-Based Demand Response Model 163
6.3.1 Energy Management Model of the ITCA 164
6.3.2 Flexibility of ITCAs 166
6.3.3 ITCAs’ Flexibility Under TOU Power Price 169
6.3.4 Unit Scheduling Model Considering the Flexibility of ITCAs 170
6.4 Integrated Energy System Demand Response Model 173
6.4.1 Typical Topology 174
6.4.2 Integrated Demand Response Model 175
6.4.3 Two-Stage Stochastic Chance-Constrained Programming Model 179
6.5 Case Studies 185
6.5.1 Residential Load Demand Response 185
6.5.2 Price-Based Demand Response Model 188
6.5.3 Integrated Energy System Demand Response 191
6.6 Conclusion 197
References 198
7 Large-Scale Distributed Flexible Resources Aggregation 199
7.1 Introduction 199
7.2 Large Scale Interruptible and Shiftable Load Aggregation 202
7.2.1 Equivalent Aggregated Model for Large-Scale Interruptible and Shiftable Loads 202
7.2.2 Equivalent Model for a Single Group 203
7.2.3 Scheduling with Equivalent Aggregated Model 213
7.3 Large Scale EV Aggregation 217
7.3.1 Market Framework 217
7.3.2 Aggregate Model of Electric Vehicle Fleets 218
7.3.3 Model of Optimal Bidding Strategy of Microgrid 223
7.4 Case Study 226
7.4.1 Large Scale Interruptible and Shiftable Load Aggregation 226
7.4.2 Large Scale Distributed Energy Storage Aggregation 233
7.5 Conclusion 237
References 238
8 Market Mechanism Design for Enhancing the Flexibility of Power Systems 241
8.1 Introduction 242
8.2 The Framework of Balancing Market 243
8.2.1 The Framework of Balancing Market 243
8.2.2 Key Design Elements in Imbalance Settlement 244
8.3 System Model 247
8.3.1 Balancing Market Clearing Optimization Model Embedded with the Offering Strategy of Wind Power Producers 247
8.3.2 Offering Strategy of the Wind Power Producer 248
8.3.3 Objective Function and Constraints 248
8.3.4 SolutionMethod 250
8.3.5 ABMMethod 251
8.3.6 TheMCDA Evaluation 255
8.4 Case Studies 261
8.4.1 Analysis of Wind Power Supplier’s Strategic Offering 261
8.4.2 Analysis of Strategic Interaction Behavior of Market Players 265
8.5 Conclusion 269
References 270


» 电力系统灵活性:建模,优化与机制设计(英文版) 周明 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值258元)【高清非扫描版】(2023年06月)

常见问题FAQ

已经购买的资源,有效期是多久?
账号内已购资源:百度网盘分享,永久有效,不过期。
链接地址失效了怎么办?
本站学习资源因防盗链原因,每次生成链接有效期一般为30天,如遇链接地址过期失效,请提供资源链接地址联系网站QQ客服,工作时间内我们看到后将第一时间回复。
遇到付款失败,付款后没有生效怎么办?
理论上来说正常付款后不会出现此类问题,但是也会有部分用户因为网络等原因导致在付款的过程中会有一些小插曲。如果出现类似问题,大可不必惊慌,本站所有支付都会生成订单,不管成功还是失败,所以如果真正遇到网络问题导致付款失败您又不知道是否成功时,请提供 "付款凭证+个人中心用户名" 截图给在线QQ客服处理。
本站PDF电子课本/电子教材版本标注说明
【高清原版 非扫描版】:非扫描,高清原版品质,文字可编辑 。
【高清非扫描版】:非扫描,高清品质,文字不可编辑。